Lecture Notes 2-3: Calculating Limits Using the Limit LAWS

ReVIEW:

1. What does it mean to write $\lim _{x \rightarrow a} f(x)=L$ ?
2. Given $f(x)$ and $a$ how did we find the limit as $x$ gets close to $a$, $f(x)$ gets close to $L$.

GOALS:
$L$ or show that it doesn't exist?

- plug in numbers getting closer to $a$ and made a guess
- 100ke a graph of $y=f(x)$
- Learn a whole bunch of general principles about calculating limits.
- Correct and careful application of these principles will allow us to (a) avoid the tedious calculation from Section 2-2 and (b) avoid the mistakes and pitfalls of relying on numerical approximations. rules ave true only if
In the rules below $c$ is a constant and $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. these hypotheses are met.
formal notation

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
in English sentences
formal notation
2. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
4. $\lim _{x \rightarrow a}[c f(x)]=C \lim _{x \rightarrow a} f(x)$
5. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow a} f(x)\right] *\left[\lim _{x \rightarrow a} g(x)\right]$ 4. limits pass through products
6. $\begin{array}{r}\lim _{x \rightarrow a}[f(x) / g(x)]=\left(\lim _{x \rightarrow a} f(x)\right) /\left(\lim _{x \rightarrow a} g(x)\right) \\ \text { *provided } \lim _{x \rightarrow a} g(x) \neq 0 .\end{array}$

Why is this needed??

## EXAMPLE 1:

1. Graph $f(x)=x$ and $g(x)=3.8$ on the axes below:

2. Use the graphs to evaluate the limits below: $\lim _{x \rightarrow 2} f(x)=\underline{2}$

$$
\lim _{x \rightarrow 2} g(x)=3.8
$$

3. Do the limits $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow 2} g(x)$ exist? Why?

Yes, we found them graphically. The limits from the left $t$ right at $x=2$ are equal.
4. Use the limit laws and part 2. above to evaluate $\lim _{x \rightarrow 2}[8 x-3.8]$. Justify your steps.

$$
\begin{aligned}
\lim _{x \rightarrow 2}[8 x-3.8] & =\lim _{x \rightarrow 2} 8 x-\lim _{x \rightarrow 2} 3.8 \quad \text { (Rule 2) } \\
& =8 \lim _{x \rightarrow 2} x-\lim _{x \rightarrow 2} 3.8 \quad \text { (Rule 3) } \\
& =8(2)-3.8 \\
& =16-3.8=12.2
\end{aligned}
$$

5. Use the limit laws and part 2. above to evaluate $\lim _{x \rightarrow 2} x^{5}$. Justify your steps.

$$
\begin{aligned}
\lim _{x \rightarrow 2} x^{5} & =\lim _{x \rightarrow 2}(x \cdot x \cdot x \cdot x \cdot x) \\
& =\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right) \quad \text { (Rule) } \\
& =2^{5} \\
& =32
\end{aligned}
$$

## Limit Laws (Table 2)

In the rules below $c$ is a constant, $n$ is a positive integer, and $\lim _{x \rightarrow a} f(x)$ exists.

1. $\lim _{x \rightarrow a}(f(x))^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
2. $\lim _{x \rightarrow a} c=\mathbf{C}$
3. $\lim _{x \rightarrow a} x=$
$a$
4. $\lim _{x \rightarrow a} x^{n}=\boldsymbol{a}^{\boldsymbol{n}}$
5. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{\lim _{x \rightarrow a} x}=\sqrt[n]{a}$
6. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$

EXAMPLE 2: Evaluate $\lim _{x \rightarrow-3} \frac{\sqrt{x^{2}-5}}{4-2 x}$ and justify your steps.

$$
\text { a. Find } \lim _{x \rightarrow-1} f(x)=\frac{\lim _{x \rightarrow-1}\left(x^{2}+1\right)}{\lim _{x \rightarrow-1}(2 x-4)}
$$

c. Find $\lim _{x \rightarrow 2^{+}} f(x)$.
note $\lim _{x \rightarrow 2^{+}}(2 x-4)=0$, so
b. Find $f(-1)=\frac{(-1)^{2}+1}{2(-1)-4}$

$$
\begin{aligned}
& =\frac{1+1}{-2-4} \\
& =\frac{2}{-6} \\
& =-1 / 3
\end{aligned}
$$

$$
=\frac{2}{-6}
$$


d. Find $f(2)$
$f(2)$ does not exist our rules do not apply. division by zero!
As $x \rightarrow 2^{+}, 2 x-4 \rightarrow 0^{+}$
And $\lim _{x \rightarrow 2^{+}}\left(x^{2}+1\right)=5$

So $\lim _{x \rightarrow 2+} f(x)=\infty$
e. (1) or $\frac{\lim _{x \rightarrow-1}}{} f(x)=f(-1)$.

True both are $-1 / 3$
f. T of F: $\lim _{x \rightarrow 2} f(x)=f(2)$.

False
neither of these exist, so they cannot be equal.
g. Fill in the blank in the statement of the DIRECT SUbSTITUTION Property:

If $f(x)$ is a polynomial or rational function and $a$ in the domain of $f$, then $\lim _{x \rightarrow a} f(x)=f(a) \longleftarrow$ As in, you can just plug in a.

g. For what $x$-values is $f(x)=g(x)$ ? For what $x$-values is $f(x) \neq g(x)$ ?
for $x$ in $(-\infty, 0) \cup(0, \infty)\{$ for $x=0$ only.
h. Explain how $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)$ even though $f(0) \neq g(0)$.
when we find the limit as $x \rightarrow 0$ we only consider $x$ close to 0, not $x=0$ itself.
Practice Problem 3: Sketch the graph of each function below and find the indicated limits, if they exists. If the limits do not exist, explain why they do not exist.

$$
\begin{aligned}
& \text { a. Sketch } f(x)= \begin{cases}e^{x}-1 & x<0 \\
2 & x=0 \\
x^{2} & x>0\end{cases} \\
& \lim _{x \rightarrow-2} f(x)=e^{-2}-1=1 / e^{2}-1 \\
& \lim _{x \rightarrow 0} f(x)=0 \\
& \lim _{x \rightarrow 3} g(x)=1
\end{aligned}
$$

In general, describe the relationship between the TWO-sided limit and each of the ONE-sided limits.
$\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$

Q: What to do with limits that are $0 \%$ form?
A: use algebra to simplify so you can use direct substitution.
ex

$$
\begin{aligned}
\lim _{x \rightarrow-4} \frac{x^{2}+5 x+4}{x^{2}+3 x-4} & =\lim _{x \rightarrow-4} \frac{(x+4)(x+1)}{(x+4)(x-1)} \\
& =\lim _{x \rightarrow-4}\left(\frac{x+1}{x-1}\right) \\
& =-\frac{4+1}{-4-1} \\
& =-3 /-5 \\
& =3 / 5
\end{aligned}
$$

ex.

$$
\begin{aligned}
\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{16 x-x^{2}} & \left.=\lim _{x \rightarrow 16} \frac{(4-\sqrt{x}}{x(16-x)( }\right)\left(\frac{4+\sqrt{x})}{4+\sqrt{x})}\right. \\
& =\lim _{x \rightarrow 16} \frac{16-x}{x(16-x)(4+\sqrt{x})} \\
& =\lim _{x \rightarrow 16} \frac{1}{x(4+\sqrt{x})} \\
& =\frac{1}{16(4+\sqrt{16})} \\
& =\frac{1}{16(8)} \\
& =\frac{1}{128}
\end{aligned}
$$

ex

$$
\begin{aligned}
\lim _{n \rightarrow 0} \frac{(3+n)^{-1}-3^{-1}}{n} & =\lim _{h \rightarrow 0} \frac{\frac{3}{3(3+n)}-\frac{1}{3}\left(\frac{3+n}{3+n}\right)}{h} \\
& =\lim _{n \rightarrow 0} \frac{\frac{3}{3(3+n)}-\frac{(3+n)}{3(3+n)}}{n} \\
& =\lim _{h \rightarrow 0} \frac{(3-3-h)}{3(3+n)} \cdot \frac{1}{n} \\
& =\lim _{h \rightarrow 0} \frac{-n}{3(3+n)} \cdot \frac{1}{n} \\
& =\lim _{n \rightarrow 0} \frac{-1}{3(3+n)} \\
& =-1 / 9
\end{aligned}
$$

